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Why study nonclassical HGMS of tame extensions?

“Better” descriptions of rings of integers in tame Galois extensions of

global fields: Martinet’s tame quaternionic extensions of Q.

Descriptions of rings of integers in separable, but non-normal, tame

extensions (local or global).

Uniformity: No known example of a tame H-Galois separable

extension L/K of local fields for which OL is not free over AH .

Obvious candidate for the associated order: if H = E [N]G then

OE [N]G ⊆ AH , and there are many examples of equality.
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Three theorems (in reverse order)

Theorem

Let L/K be a tame Galois extension of p-adic fields with group G , and let

H = L[N]G be a commutative Hopf algebra giving a Hopf-Galois structure

on the extension. Then OL is a free OL[N]G -module.
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Three theorems (in reverse order)

Recall that a separable extension L/K with Galois closure E/K is

called Almost classically Galois if Gal(E/L) has a normal complement

in Gal(E/K ).

Theorem

Let L/K be a tame almost classically Galois extension of p-adic fields with

Galois closure E/K having group G , and let H = E [N]G be a

commutative Hopf algebra giving a Hopf-Galois structure on L/K . Then

OL is a free OE [N]G -module.
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Three theorems (in reverse order)

Theorem

Let L/K be a tame abelian extension of number fields with group G , and

let H = L[N]G be a commutative Hopf algebra giving a Hopf-Galois

structure on the extension. Then OL is a locally free OL[N]G -module.
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Sufficient conditions, old and new

Let L/K be a tamely ramified Galois extension of p-adic fields with

group G .

Theorem (PT 2011, 2013)

Suppose at least one of the following conditions is satisfied:

p - [L : K ] and H is commutative;

The inertia subgroup G0 acts trivially on N.

Then OL is a free OL[N]G -module.

Theorem

Suppose that N is abelian. The p-part and prime-to-p-part of N are each

G -stable. If G0 acts trivially on the p-part of N, then OL is a free

OL[N]G -module.
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Induced Hopf-Galois structures

Theorem (Crespo et al. 2016)

Let L/K be a Galois extension of fields with group G and F/K a

subextension. Suppose that:

Gal(L/F ) has a normal complement C in G ;

HT ,HU , with underlying groups T ,U, give Hopf-Galois structures on

L/F , F/K respectively.

Then there is a Hopf algebra H with underlying group T × U giving a

Hopf-Galois structure on L/K .

Say that the Hopf-Galois structure on L/K given by H is Induced

from those on L/F and F/K .

In this situation, T ,U are G -stable subgroups of Perm(G ).

Furthermore, the action of the normal complement C on T is trivial.
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Conversely...

Theorem (Crespo et al. 2016)

Suppose that

H gives a Hopf-Galois structure on L/K ;

the underlying group N is the direct product of two G -stable

subgroups T ,U;

Gal(L/LT ) has a normal complement C in G .

Then:

there are Hopf algebras HT ,HU , with underlying groups T ,U

respectively, giving Hopf-Galois structures on L/LT , LT/K

respectively;

the Hopf-Galois structure given on L/K by H is induced from these

two Hopf-Galois structures.

...and so the action of C on T is trivial.
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Putting the pieces together

Let L/K be a tame Galois extension of p-adic fields with group G ,

and let H = L[N]G with N abelian.

Let T be the Sylow p-subgroup of N; write N = T × U with p - |U|.
If the action of G0 on T is trivial, then OL is a free OL[N]G -module.

If Gal(L/LT ) has a normal complement C in G then the Hopf-Galois

structure given by H on L/K is induced by Hopf-Galois structures on

L/LT and LT/K respectively, and the action of C on T is trivial.

So...

If Gal(L/LT ) has a normal complement in G containing G0, then OL is a

free OL[N]G -module.
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Normal p-complements for tame Galois extensions

Proposition

Let pr be the largest power of p that divides |G |, and let F/K be a

subextension of L/K such that [L : F ] = pr . Then Gal(L/F ) has a normal

complement in G containing G0.

Proof.

G/G0 is cyclic, so it has a unique normal subgroup of index pr .

So G has a unique normal subgroup C of index pr , containing G0.

By the Schur-Zassenhaus theorem, C has a complement in G and the

complements of C in G are conjugate.

But any complement of C in G is a Sylow p-subgroup of G , and

these are all conjugate.

So the complements to C in G are precisely the Sylow p-subgroups of

G , and Gal(L/F ) is one of these.

Paul Truman Commutative Hopf-Galois Module Structure 10 / 13



Towards non-normal extensions: a descent result

Proposition

Let E/K be a Galois extension of p-adic fields with group G and let L/K

be a subextension. Let wHT ,HU give Hopf-Galois structures on E/L, L/K

respectively, and let H give the Hopf-Galois structure on E/L induced by

these. Suppose that:

Gal(E/L) has a normal complement in G ;

E/L is at most tamely ramified;

OE is a free AH -module.

Then OL is a free AHU
-module.
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Almost classically Galois extensions

Theorem

Let L/K be a tame almost classically Galois extension of p-adic fields with

Galois closure E/K and let HU be a commutative Hopf algebra giving a

Hopf-Galois structure on L/K . Then OL is a free AHU
-module.

Proof (Sketch).

Since L/K is tame, E/L is unramified, hence cyclic. By hypothesis,

Gal(E/L) has a normal complement in G .

Induce a Hopf-Galois structure on E/K from the structure given by

HU on L/K and the classical structure on E/L. The corresponding

Hopf algebra, say H, is commutative.

By the Galois version of the theorem, OE is a free AH -module.

Now by the descent result, OL is a free AHU
-module.
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Thank you for your attention.
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